

Providing Solutions Through Innovation

Venting. . .

System Design for
 Pneumatic Fill!

Table of Contents

1) SAFE-Surge ${ }^{\text {TM }}$ Value Message
2) SAFE-Surge ${ }^{T M}$ Flyer
3) Technical Bulletin Venting: Design for ACFM
4) R-S-H Engineering
a. HCL Unloading Study
b. Appendix - Calculations
c. Assumption Recap

POLYPROCESSING

Providing Solutions Through Innovation

SAFE-Surge ${ }^{\text {TM }}$ Technology Poly Processing Company

Emergency Air Surge Protection
For
Polyethylene Storage Tanks

Assumptions:

- Proper design compensates for air surge
- Vent capacity \geq ACFM at line purge
- Adequate venting mitigates fitting leaks and increases tank life

Critical Issue . . . ACFM!

- Tanker Discharge Hose Size
- Tank Inlet Pipe Size
- Tank Vent Size

Plan for 30 p.s.i. at line purge!

POLYPROCESSING

Providing Solutions Through Innovation

Helping Our Customers . . .

\checkmark Solve Problems

- Venting design deficiencies for pneumatic filling
\checkmark Manage Risk

\checkmark Enhance Your Profits
- Continuous Operation

In-Use Customer Values

Increased Safety Margin

Increased Tank Life

\checkmark Peace of Mind

Venting Requirements For Polyethylene Tanks											
Pneumatic Fill											
IF - Vent length ≤ 3 feet			IF - Vent length > 3^{\prime} and $\leq 30 '$			IF - Scrubber Application					
AND - Vent screen mesh size $\geq 1 / 4$ " or no screen used			AND - 3 or less 90° elbows with no other restrictions or reduction in pipe size			Pipe from vent to scrubber CANNOT be reduced!					
			Centerline of dispersion pipe not to be submersed > 6 inches								
Emergency Pressure Relief Cover Required						Emergency Pressure Relief Cover Required			Perforated dispersion pipe must be same diameter or larger, as vent. Sum of perforations \geq cross sectional area of pipe		
Discharge Hose Size	Inlet/Fitting Size	Minimum Vent Size	Discharge Hose Size	Inlet/Fitting Size	Minimum Vent Size	Discharge Hose Size	Inlet/Fitting Size	Minimum Vent Size			
$2 "$	$2 "$	$4{ }^{\prime \prime}$	$2 "$	2"	$6 "$	$2{ }^{\prime \prime}$	2"	$6 "$			
3"	2"	$6 "$	3"	2"	$6 "$	3"	2"	8"			
3"	3"	$6 "$	3"	3"	8"	3"	3"	10"			

POLYPROCESSING

Providing Solutions Through Innovation

Helping Our Customers . . .

\checkmark Solve Problems

- Proper design compensates for pneumatic filling
\checkmark Manage Risk
- Vent capacity \geq ACFM at line purge
\checkmark Enhance Your Profits
- Continuous Operation

SAFE-Surge ${ }^{\text {TM }}$ Technology

Emergency Air Surge Protection for Polyethylene Chemical Tanks

\checkmark Designed for Pneumatic-Fill \checkmark Adequate ACFM Consideration (air cubic feet per minute)
\checkmark Increased Tank Life \checkmark Increased Margin of Safety

Prepare for the Unexpected!

Distributed By:

POLYPROCESSING

Providing Solutions Through Innovation
www.polyprocessing.com

POLYPROCESSING Providing Soltuions Through Innovation	Technical Bulletin	Venting - Design for ACFM (Air Cubic Feet per Minute)
	Date: January 2006 Rev. -	

Poly Processing Company commissioned an engineering consulting firm to determine the proper venting requirements necessary for polyethylene storage tanks. Two methods of filling were considered, 1) mechanical pumping and 2) compressed air (pneumatic) from tanker trucks.

Filling by Mechanical Pump

Using mechanical pumps to fill your tank is a low impact process and typically does not cause excessive pressure to be placed upon the tank.

- ≤ 1000 gallons - vent size should equal the size of the largest fill or discharge fitting
- > 1000 gallons - vent size should exceed the largest fill or discharge fitting by one-inch.

Pneumatic Filling

The engineering study reviewed the pneumatic filling of a polyethylene storage tank for three common venting scenarios:

1. Short Vent (u-vent)
2. Long Vent (vented through the roof or into a common venting system)
3. Scrubber Vent (used where fume scrubbing is critical)

The following criteria were established for all three venting scenarios:

1. Maximum pressure used to unload tanker trailer was 30 psig.
2. Evaluate tanker hose impact; 1 ", 2 " \& 3 ".
3. Evaluate fill-line/fitting size impact; $1^{\prime \prime}, 2^{\prime \prime} \& 3$ ".
4. Polyethylene tank internal pressure must not exceed 10 " water column per ASTM D1998 section 1.1.3.

General Conclusions

1. Tanker trailer, once emptied of liquid, becomes large reservoir of compressed air at 30 psig .
2. Size of delivery hose from trailer to tank, 1 to 3 inches in diameter, impacts the volume of air delivered to the tank during line purge.
3. Size of fill line / fitting of the tank, 1 to 3 inches in diameter, impacts the volume of air delivered to the tank during line purge.
4. Vent size 2 inches larger than the fill assembly is sufficient to handle the delivery of the liquid product, but may not handle the volume of air released from the tanker trailer based on conclusions \#2 and \#3.
5. Venting capacity must equal or exceed Air Cubic Feet per Minute (ACFM) coming from tanker truck for adequate margin of safety and increased tank life!

POLYPROCESSING Providing SolutionsThrough Innoxtion	Technical Bulletin	Venting - Design for ACFM (Air Cubic Feet per Minute)
	Date: January 2006 Rev. -	

Pneumatic Fill Scenario \#1

Short Vent

- Vent length ≤ 3 '
- Mesh size on bug screen $\geq 1 / 4$ " or no screen
- Weighted hinged manway not required

ACFM = air cubic feet per minute

POLYPROCESSING Providing SolutionsThrough Innoxtion	Technical Bulletin	Venting - Design for ACFM (Air Cubic Feet per Minute)
	Date: January 2006 Rev. -	

Pneumatic Fill Scenario \#2
 Long Vent

- Vent length > 3' and $\leq 30^{\prime}$
- Three or less 90° elbows and no other restrictions, i.e. smaller diameter pipe
- Weighted hinged manway not required

POLYPROCESSING Providing SolutionsThrough Innoxtion	Technical Bulletin	Venting - Design for ACFM (Air Cubic Feet per Minute)
	Date: January 2006 Rev. -	

Pneumatic Fill Scenario \#3

Scrubber Vent

- Piping from vent to scrubber cannot be reduced
- Perforated dispersion pipe must be same diameter, or larger, as vent
- Centerline of dispersion pipe not to be submersed >6 inches
- Sum of perforations \geq cross sectional area of pipe

HCL UNLOADING STUDY
 for Poly Processing Company

By
R-S-H Engineering

June 14, 2005
An investigation was made into tank venting requirements for a tank being filled from a tank truck. The following data represents the typical case and is the basis for all calculations:

Tank - HD polyethylene material capable of 10 " water column (w.c.) internal pressure. Capacity of 6,600 gallons normal. Dimensions of 12 ' dia. by 10^{\prime} high or 10 ' dia. by 13 '-5" high. Total capacity to full includes the dome and adds 675 gallons additional for a total of 7,275 gallons.

Truck - 2 axle trailer with a 5,500 gallon capacity.
Air unloading equipment consisting of -1 " air line to pressurize truck trailer thereby forcing the liquid HCL up a 3 " eductor tube to a hose connection.

Fill hose - 2" hose from hose connection on truck trailer to the fill connection of the storage tank.

Tank Vent -- 6" diameter vent from the storage tank to a seal pot located at grade with 6" depth of water above the vent outlet (used to scrub HCL vapors from the venting air).

HCL acid -- Liquid being transferred from truck trailer to the storage tank. Properties are:

Specific gravity -- 1.19
Viscosity -- 1.9 centipoise
37\% by weight HCL
Temperature -- $60^{\circ} \mathrm{F}$ (tables only list properties at this temperature, variation in viscosity and specific gravity are not likely to vary much within the actual range).

Methodology of the calculation is to determine the actual flow in cubic feet per minute through Section 1 of the system with liquid HCL and with air as the flowing medium in a 2" diameter hose and fill lines. The pressure in the storage tank for both HCL and air can be considered to be 10 inches of water column as this is the rated pressure for the tank. Pressure in the truck trailer is 30 psig determined by the setting on the relief valve. Normal operating procedure is to be a few psi below the maximum, but for calculation purposes it is necessary to use the maximum.

The cubic feet per minute determined in Section 1 is then the flow rate which must pass out of the storage tank vent without causing the pressure in the tank to "grow" beyond 10 " w.c. There is a back pressure of 6 " w.c. at the exit of the vent (seal pot) due to the height of the water. The total motive pressure for the vent is 10 inches w.c. minus 6 " w.c. That delta pressure is only 4 inches w.c. (0.144 psi).

Results for the Section 1 calculations show that the following flow rates in cubic feet per minute are achieved from the truck to the storage tank with a motive force of $30 \mathrm{psi}-$ 10 " w.c. (0.361 psi) $=29.639 \mathrm{psi}$.

HCL

$$
\text { 2"dia fill line }---------->\quad 28.8 \text { cfm }
$$

Air
2"dia fill line ------------> 920 cfm

Section 2 then must achieve vent flow rates equal to or better than those flow rates with a pressure differential of only 0.144 psi.

The calculated results for Section 2 flowing air and HCL vapor are as follows:
$\begin{aligned} \text { Vapor } & \\ \text { 4" dia vent line }----------\rightarrow & 382 \mathrm{cfm} \\ & 6 \text { " dia vent line }-\ldots-------> \\ & 968.8 \mathrm{cfm}\end{aligned}$
This shows that the 4 " vent is more than adequate for air pressure driving liquid HCL through the fill line. As long as there is total assurance that the unloading valve at the truck is closed before the truck is totally emptied, there would not be any problem with over pressurizing the Storage Tank. Resistance to flow due to the viscosity of the liquid HCL is sufficient to prevent a rapid displacement of the air inside the storage tank.

If, however, the valve at the truck is not closed before air enters the fill line, there will be a very rapid increase of the flow rate into the Storage Tank. The truck will have become a very large air receiver filled with 30 psig air. This air will rush through the fill line into the Storage Tank at the rate shown above of 920 cfm . That air will start leaving the

Tank at 382 cfm (4" dia vent) or 969 cfm (6" dia. vent) at the Tank's maximum pressure of 10 inches w.c. With the 4 " vent, pressure will then continue to build until equilibrium of flow is achieved or until the Tank fails. Calculations were made with 1 psig in the tank which showed that air would enter the tank at 890 cfm and would vent out of the tank at 878 cfm . Equilibrium would be established at slightly over 1.0 psig in the Tank (by extrapolation). This is also roughly at the failure point of the tank. Clearly, a 4 inch vent is not adequate.

As an example of how quickly a tank failure could happen, let's look at the case of a truck being emptied with a 2 " line and hose to the Storage Tank and a 4 " vent line to the water seal (scrubber). We can assume that the truck completely unloaded the typical capacity of 5,500 gallons. The Tank has a total volume of 7,275 gallons counting the dome.

Tank air space $=(7,275$ gallons $-5,500$ gallons $) / 7.48 \mathrm{gal} / \mathrm{cu} . \mathrm{ft} .=237 \mathrm{cu} . \mathrm{ft}$.

From the previous calculations we know that an average flow rate of around 900 cfm would be achieved as the tank went from a few inches of water column to 1.0 psig internal pressure. Flow out through the 4" vent will vary from around 200 cfm immediately after air starts flowing to 878 at 1 psig. Using 550 cfm as the average vent flow, we have the tank being filled with 1 psig air at a rate of $350 \mathrm{cfm}(900-550)$ into a space of $237 \mathrm{cu} . \mathrm{ft}$. total. This indicates that the tank would reach 1 psig in less than 1 minute after air starts flowing through the fill line. (This approach to determining time to reach pressure is greatly simplified and certainly not mathematically rigorous, but it is sufficient to see that it would be a very short time before tank failure could potentially occur.)

That time would be significantly shortened if the tank was more than $3 / 4$ full, thus reducing the available air space. Also we know that if a 3" fill hose were used instead of a 2" hose, the time before failure would again be shortened.

Conclusion: Unless secondary safety devices are in place to protect the Storage Tank from an internal pressure above 10 " w.c., it would not be prudent to use a vent smaller than 6 " diameter when unloading a tank truck using 30 psig air as the motive force. The margin of error is so small to protect the tank with only 10 " w.c. internal pressure rating that a safety relief device, such as a weighted hinged lid on the tank, is strongly recommended.

APPENDIX A

CALCULATIONS

File Name:

POLYI-A
37\% HCL Flowing

FLUID DESCRIPTION

Asmpt: Incompressible
Fluid: Hydrochloric Acid Solution, 37.00% Hydrochloric Acid

Temperature:
Density:
Specific Volume:
Specific Gravity:
Abs. Viscosity:
Kin. Viscosity:
60.00 Fahrenheit
$74.29 \mathrm{lb} / \mathrm{cu} \mathrm{ft}$
$0.013 \mathrm{cu} \mathrm{ft/lb}$
1.190
1.900 centipoise
1.597 centistokes

HARDWARE DESCRIPTION
Number of Components: 11
Branch Inlet Diameter: 3.068 inches
Branch Outlet Diameter: 2.047 inches
Branch Elevational Change: 0.0 feet
Branch K Factor: 38.40
FLOW DESCRIPTION
Mass Flow Rate:
Volumetric Flow Rate: $\quad 128,421.81 \mathrm{lb/hx}$
Velocity:

| Differential Pressure: | 29.64 PSID |
| :--- | ---: | :--- |
| Head Loss: | 52.21 feet |
| Head Loss: | 26.937 PSID |

FLOW DESCRIPTION - TABLE

```
Mass Flow Rate: 128,421.81 lb/hr
Volumetric Flow Rate: 28.81 cu ft/min = 215.52 US gal/min
Units as follows:
    Velocity: ft/sec (FPS)
    Head Loss: feet
    Differential Pressure: PSID
```

Component Name
INLET
Entrance, 3" proj
Pipe, NPS 3, sched 40, 8.00'
Ball valve
Reducer, $3 \mathrm{X} 2^{\prime \prime}$ sud
Pipe, NPS 2, 30.00'
Pipe, NPS 2, sched 40, 18.00^{1}
Ball valve
[3] Elbow, 2" 90 LR flg/BW Exit, $2^{\prime \prime}$ sharp-edged

OUTLET

Inl Vel Out Vel
9.35
52.21
29.639

9.35	9.35	0.07	0.036
9.35	20.61	1.80	3.632
22.01	22.01	25.00	12.896
21.01	21.01	12.61	6.504
21.01	21.01	0.39	0.202
21.01	21.01	5.48	2.830
21.01	21.01	6.86	3.539
	21.01	52.21	29.639

```
ONE-PAGE SUMMARY
Air Flowing
File Name:
POLY1-A
```


FLUID DESCRIPTION

```
Inlet Fluid Conditions
Spec. Heat Ratio (Cp/Cv): 1.400
Molecular Weight: 28.96
Specific Gravity: 1.000
Temperature:
80.00 Fahrenheit
Pressure:
30.00 PSIG \(=44.70 \mathrm{PSIA}\)
Density:
\(0.22 \mathrm{lb} / \mathrm{cu} \mathrm{ft}\)
Specific Volume:
\(4.471 \mathrm{cu} \mathrm{ft} / \mathrm{lb}\)
Abs. Viscosity:
0.018 centipoise
Kin. Viscosity:
5.080 centistokes
```


HARDWARE DESCRIPTION

```
Number of Components:
11
Branch Inlet Diameter: 3.068 inches
Branch Outlet Diameter: 2.047 inches
Branch Elevational Change: 0.0 feet
Branch K Factor:
37.04
```


FLOW DESCRIPTION

$$
\begin{aligned}
& \text { ain into sta cage Tank } \\
& 30 \text { prig at Truck, } 10^{\prime \prime} \mathrm{H}_{2} \mathrm{O} \text { in Tank }
\end{aligned}
$$

FLOW DESCRIPTION - TABLE

```
Mass Flow Rate: 5,675.26 1b/hr
Std Vol. Flow Rate: 1,239.224 SCEM
Units as follows:
    Volumetric Elow Rate: cu ft/min
    Velocity: ft/sec (FPS)
    Differential Pressure: PSID
```

Component Name	Inl Vel Inl Vol	DP	Exp Fact	
INLET				
Entrance, 3" proj	137.30	422.93	29.640	
Pipe, NPS 3, sched 40, 8.00'	137.30	422.93	0.361	NA
Ball valve	138.10	425.39	0.262	NA
Reducer, 3 X 2" sud	138.69	427.19	0.024	NA
Pipe, NPS 2, 30.00'	138.74	427.36	2.426	NA
Pipe, NPS 2, sched 40, 18.00'	339.96	445.01	9.948	NA
Ball valve	394.45	540.88	6.052	NA
[3] Elbow, 2" 90 LR flg/BW	458.95	629.34	0.242	NA
Exit, 2" sharp-edged	462.08	633.62	3.731	NA
OUTLET	517.65	709.82	6.594	NA
		671.00	422.93	29.640

File Name: POLYI-A

FLUID DESCRIPTION

Inlet Fluid Conditions
Spec. Heat Ratio (Cp/Cv): 1.400
Molecular Weight:
28.96

Specific Gravity:
1.000

```
Temperature: 80.00 Fahrenheit
Pressure:
1,239.42 in water (68F) abs = 44.70 PSIA
Density:
Specific Volume:
    .ab/cu ft
Abs. Viscosity:
    0.018 centipoise
Kin. Viscosity: 5.080 centistokes
HARDWARE DESCRIPTION
```

Number of Components:
11
Branch Inlet Diameter: $\quad 3.068$ inches
Branch Outlet Diameter: 2.047 inches
Branch Elevational Change: 0.0 feet
Branch K Factor: 37.04

FLOW DESCRIPTION

Mass Flow Rate: $\quad 5,653.86 \mathrm{ib} / \mathrm{hr}$
Std Vol. Flow Rate: 1,234.552 SCEM
Inlet Vol. Flow Rate: $\quad 421.33 \mathrm{cu} \mathrm{ft} / \mathrm{min}=3,151.80 \mathrm{US}$ gal $/ \mathrm{min}$
Inlet Velocity: $\quad 136.78 \mathrm{ft} / \mathrm{sec}$ (FPS)
Inlet Mach No.:
Outlet Vol. Flow Rate: $889.73 \mathrm{cu} \mathrm{ft} / \mathrm{min}=6,655.71$ us gal $/ \mathrm{min}$
Outlet Velocity:
Outlet Mach No.:
$648.85 \mathrm{ft} / \mathrm{sec}$ (FPS)
0.662

Differential Pressure: 29.00 PSID


```
Mass Flow Rate: 5,653.86 lb/hr
Std Vol. Flow Rate: 1,234.552 SCFM
Units as follows:
    Volumetric Flow Rate: cu ft/min
    Velocity: ft/sec (FPS)
    Differential Pressure: PSID
```

Component Name
INLET
Entrance, $3 "$ proj
Pipe, NPS 3, sched $40,8.00^{\prime}$ Ball valve
Reducer, 3 X $2^{\prime \prime}$ sud
Pipe, NPS 2, 30.00'
Pipe, NPS 2, sched 40, 18.00^{\prime} Ball valve
[3] Elbow, $2^{\text {T }} 90$ LR flg/BW Exit, $2^{\prime \prime}$ sharp-edged

OUTLET

Inl Vel Inl Vol DP Exp Fact
$136.78 \quad 421.33 \quad 29.000$
$136.78 \quad 421.33 \quad 0.358 \quad \mathrm{NA}$
$137.57 \quad 423.76 \quad 0.260$ NA
$138.15 \quad 425.55 \quad 0.024 \quad \mathrm{NA}$
$138.21425 .71 \quad 2.407$ NA
$338.54 \quad 443.15 \quad 9.846$ NA
$391.84 \quad 537.31 \quad 5.962$ NA
$454.49 \quad 623.22 \quad 0.238$ NA
$457.50 \quad 627.35 \quad 3.646$ NA
$510.56 \quad 700.11 \quad 6.258 \quad \mathrm{NA}$
$648.85 \quad 421.33 \quad 29.000$

HARDWARE DESCRIPTION

Number of Components:
Branch Inlet Diameter:
3.998 inches

Branch Outlet Diameter:
3.998 inches

Branch Elevational Change: 0.0 feet
Branch K Factor:
3.18

FLOW DESCRIPTION
Mass Flow Rate:

$$
1,792.651 \mathrm{~b} / \mathrm{hr}
$$

Std Vol. Flow Rate:
$391.436 \mathrm{SCFM} \quad$ volume
Inlet Vol. Flow Rate:
$382.06 \mathrm{cu} \mathrm{ft} / \mathrm{min}=2,858.01 \mathrm{US} \mathrm{gal} / \mathrm{min}$ Inlet Velocity: $73.04 \mathrm{ft} / \mathrm{sec}$ (FPS)
Inlet Mach No.: 0.065

Outlet Vol. Flow Rate: $\quad 384.69 \mathrm{cu} \mathrm{ft} / \mathrm{min}=2,877.72 \mathrm{US} \mathrm{gal} / \mathrm{min}$ Outlet Velocity: $\quad 73.54 \mathrm{ft} / \mathrm{sec}$ (FPS)
Outlet Mach No.:
0.066

Differential Pressure: 0.14 pSID $4^{\prime \prime} \mathrm{Hz}_{2}$

$$
A^{\prime \prime} \text { will not wank }
$$ 382 acfm is mech less thane

the 920 acFm into tank

```
DesigNet [Ver 3] -2-
Wed Jun 15 10:17:28

FLOW DESCRIPTION - TABLE
```

Mass Flow Rate: 1,792.65 lb/hr
Std Vol. Flow Rate: 391.436 SCFM
Units as follows:
Volumetric Flow Rate: cu ft/min
Velocity: ft/sec (FPS)
Differential Pressure: PSID

```

Component Name
TNLET
Entrance, 4" sharp-edged
Pipe, NPS 4, sched 40, \(24.00^{\text {' }}\) [2] Elbow, 4" 90 LR flg/BW Tee, 4" Thru Branch

OUNLET

Inl Vel Inl Vol \(D P\) Exp Fact
\(73.04 \quad 382.06 \quad 0.144\)
\(73.04 \quad 382.06 \quad 0.023 \quad\) NA
\(73.12 \quad 382.47 \quad 0.056 \quad \mathrm{NA}\)
\(73.32 \quad 383.50 \quad 0.021\) NA
\(73.39 \quad 383.88 \quad 0.045\) NA
\(73.54 \quad 382.06 \quad 0.144\)

ONE-PAGE SUMMARY


FLUID DESCRIPTION
Inlet Fluid Conditions
Spec. Heat Ratio (Cp/Cv): 1.400
Molecular Weight: 28.96
Specific Gravity: 1.000
Temperature:
Pressure:
Density:
Specific Volume:
60.00 Fahrenheit
417.52 in water ( 68 F ) abs \(=15.06 \mathrm{PSIA}\)
\(0.08 \mathrm{lb} / \mathrm{cu} f t\) \(10^{\prime \prime} H_{2} O\)
\(12.787 \mathrm{cu} \mathrm{ft/lb}\)
Abs. Viscosity:
0.018 centipoise

Kin. Viscosity:
14.101 centistokes

HARDWARE DESCRIPTION
\begin{tabular}{lr} 
Number of Components: & 5 \\
Branch Inlet Diameter: & 6.031 inches \\
Branch Outlet Diameter: & 6.031 inches
\end{tabular}

Branch Elevational Change: 0.0 feet
Branch K Factor: 2.56
FLOW DESCRIPTION
Mass Flow Rate:
4,545.59 Ib/ hr


Std Vol. Flow Rate:
\[
992.556 \text { STEM }
\]

Inlet Vol. Flow Rate:
\(968.78 \mathrm{cu} \mathrm{ft} / \mathrm{min}=7,246.99 \mathrm{US} \mathrm{gal} / \mathrm{min}\)
\(81.39 \mathrm{ft} / \mathrm{sec}\) (FPS)
Inlet Velocity: 0.073

Inlet Mach No.:
\(975.46 \mathrm{cu} \mathrm{ft} / \mathrm{min}=7,296.99 \mathrm{US} \mathrm{gal} / \mathrm{min}\)
Outlet Vol. Flow Rate:
\(81.95 \mathrm{ft} / \mathrm{sec}(F P S)\)
Outlet Velocity:
0.073

Differential Pressure:
0.14 PSID \(4^{\prime \prime} / H_{2} 0\)

\(6^{\prime \prime}\) will work 968.8 ACFM is greater than 920.11 avn

How at of stow go Tank exceeds Flow in

DesigNet [Ver 3] Wed Jun 15 10:05:47 2005

\section*{FLOW DESCRIPTION - TABLE}
```

Mass Flow Rate: 4,545.59 1b/hr
Std vol. Flow Rate: 992.556 SCFM
Units as follows:
Volumetric Flow Rate: cu ft/min
Velocity: ft/sec (FPS)
Differential Pressure: PSID

```

Component Name

INLET

Entrance, \(6^{\prime \prime}\) sharp-edged
Pipe, NPS 6, sched 40, \(24.00^{\top}\) [2] Elbow, 6" 90 LR flg/BW Tee, \(6^{\text {T }}\) Thru Branch

OUTLET

Inl Vel Inl Vol DP Exp Fact
\(81.39 \quad 968.78 \quad 0.144\)
\(81.39 \quad 968.78 \quad 0.028 \quad\) NR
\(81.50 \quad 970.07 \quad 0.042 \quad N A\)
\(81.66 \quad 972.01 \quad 0.024 \quad\) NA
\(81.75 \quad 973.10 \quad 0.051 \quad \mathrm{NA}\)
\(81.95 \quad 968.78 \quad 0.144\)

\title{
ONE-PAGE SUMMARY
}

Air. Mowing
File Name:
POLY2-A

\section*{FLUID DESCRIPTION}

Inlet Fluid Conditions
Spec. Heat Ratio (Cp/Cv): 1.400
Molecular Weight: 28.96
Specific Gravity: 1.000
Temperature: \(\quad 60.00\) Fahrenheit
Pressure:
Density:
Specific Volume:
435.25 in water ( 68 F ) \(\mathrm{abs}=15.70 \mathrm{PSIA}\)
\(0.08 \mathrm{lb} / \mathrm{cu} \mathrm{ft}\)
\(12.266 \mathrm{cu} \mathrm{ft/Lb}\)
Abs. Viscosity:
0.018 centipoise

Kin. Viscosity:
13.527 centistokes

\section*{HARDWARE DESCRIPTION}

Number of Components:
5
Branch Inlet Diameter:
3.998 inches

Branch Outlet Diameter: 3.998 inches
Branch Elevational Change: 0.0 feet
Branch K Factor: 3.03

Mass Flow Rate:
Std Vol. Flow Rate:
\(4.292 .73 \mathrm{lb} / \mathrm{hr}\), bone Flow fipsig
Inlet Vol. Flow Rate:
\(877.61 \mathrm{cu} \mathrm{ft} / \mathrm{min}=6,564.99 \mathrm{US} \mathrm{gal} / \mathrm{min}\)
Inlet Velocity:
\(167.78 \mathrm{ft} / \mathrm{sec}\) (FPS)
Inlet Mach No.:
0.150

Outlet Vol. Flow Rate:
\(910.31 \mathrm{cu} \mathrm{ft} / \mathrm{min}=6,809.59 \mathrm{US} \mathrm{gal} / \mathrm{min}\)
Outlet Velocity: \(174.03 \mathrm{ft} / \mathrm{sec}(\mathrm{FPS})\)
Outlet Mach No.:
0.157

Differential Pressure: 0.78 PSID

877.6 vs. 889.7
```

DesigNet [Ver 3] -2- Wed Jun 15 10:54:50 2005
FLOW DESCRIPIION - TABLE

```
```

Mass Elow Rate:
4,292.73 lb/hr
Std Vol. Flow Rate: 937.341 SCFM
Units as follows:
Volumetric Flow Rate: cu ft/min
Velocity: ft/sec (FPS)
Differential Pressure: PSID

```
\begin{tabular}{lcccc} 
Component Name & Inl Vel Inl Vol & DP & Exp Fact \\
INLET & 167.78 & 877.61 & 0.784 & \\
Entrance, 4" sharp-edged & 167.78 & 877.61 & 0.127 & NA \\
Pipe, NPS 4, sched 40, 24.00' & 168.76 & 882.72 & 0.282 & NA \\
[2] Elbow, 4" 90 LR flg/BW & 170.97 & 894.32 & 0.118 & NA \\
Tee, 4" Thru Branch & 171.93 & 899.30 & 0.256 & NA \\
OUTLET & 174.03 & 877.61 & 0.784 &
\end{tabular}

\section*{Engineering Study Assumptions}
- Tank - Crosslinked PE capable of 10 " water column internal pressure per ASTM D1998
- Tank Capacity - \(\mathbf{6 6 0 0}\) gallons nominal
- Delivery trailer - 2 axles w/ 5500 gal capacity
- Fill hoses - 2 and 3 inches
- Liquid properties
o Specific Gravity 1.19
o Viscosity - 1.9 centipoise
o \(37 \%\) by weight
- Temperature \(-60^{\circ} \mathrm{F}\)
- Line purge < 15 seconds per purge
- Max trailer pressure rating - \(\mathbf{3 0} \mathbf{~ p s i}\)```

